A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4.
نویسندگان
چکیده
The morphology of the dendritic tree is critical to neuronal function and neural circuit wiring. Several Wnt family members have been demonstrated to play important roles in dendrite development. However, the Wnt receptors responsible for mediating this process remain largely elusive. Using primary hippocampal neuronal cultures as a model system, we report that Frizzled4 (Fzd4), a member of the Fzd family of Wnt receptors, specifically signals downstream of Wnt5a to promote dendrite branching and growth. Interestingly, the less conserved distal PDZ binding motif of Fzd4, and not its conserved proximal Dvl-interacting PDZ motif, is required for mediating this effect. We further showed that Dvl signaled parallel to and independent of Fzd4 in promoting dendrite growth. Unlike most previously described pathways, Wnt5a/Fzd4 signaling promoted dendrite development in an activity-independent and autocrine fashion. Together, these results provide the first identification of a Wnt receptor for regulating dendrite development in the mammalian system, and demonstrate a novel function of the distal PDZ motif of Fzd4 in dendrite morphogenesis, thereby expanding our knowledge of the complex roles of Wnt signaling in neural development.
منابع مشابه
Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling.
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requi...
متن کاملWnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis.
Wnts make up a large family of extracellular signaling molecules that play crucial roles in development and disease. A subset of noncanonical Wnts signal independently of the transcription factor β-catenin by a mechanism that regulates key morphogenetic movements during embryogenesis. The best characterized noncanonical Wnt, Wnt5a, has been suggested to signal via a variety of different recepto...
متن کاملKinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates
Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a ...
متن کاملSorting nexin 27 interacts with Fzd7 and mediates Wnt signalling
SNX27 is the only sorting nexin (SNX) that contains a PDZ domain, which interacts with PDZ-binding motif of target proteins to regulate the trafficking of these proteins. We here showed that SNX27 interacts with Frizzled (Fzd) receptors via PDZ domain interaction. Immunofluorescence microscopy revealed that Fzd7 can be internalized and associate with SNX27-containing endosomal membrane. In addi...
متن کاملFrizzled Receptors Activate a Novel JNK-Dependent Pathway that May Lead to Apoptosis
Extracellular Wnt ligands and their receptors of the Frizzled family control cell fate, proliferation, and polarity during metazoan development. Frizzled signaling modulates target gene expression through a beta-catenin-dependent pathway, functions to establish planar cell polarity in Drosophila epithelia, and activates convergent extension movements and intracellular Ca(2+) signaling in frog a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neurobiology
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2015